Abstract

Fluorescence resonance energy transfer (FRET) between matched carbocyanine lipid analogs in the plasma membrane outer leaflet of RBL mast cells was used to investigate lateral distributions of lipids and to develop a general method for quantitative measurements of lipid heterogeneity in live cell membranes. FRET measured as fluorescence quenching of long-chain donor probes such as DiO-C 18 is greater with long-chain, saturated acceptor probes such as DiI-C 16 than with unsaturated or shorter-chain acceptors with the same chromophoric headgroup compared at identical concentrations. FRET measurements between these lipid probes in model membranes support the conclusion that differential donor quenching is not caused by nonideal mixing or spectroscopic differences. Sucrose gradient analysis of plasma membrane-labeled, Triton X-100-lysed cells shows that proximity measured by FRET correlates with the extent of lipid probe partitioning into detergent-resistant membranes. FRET between DiO-C 16 and DiI-C 16 is sensitive to cholesterol depletion and disruption of liquid order (Lo) by short-chain ceramides, and it is enhanced by cross linking of Lo-associated proteins. Consistent results are obtained when homo-FRET is measured by decreased fluorescence anisotropy of DiI-C 16. These results support the existence of nanometer-scale Lo/liquid disorder heterogeneity of lipids in the outer leaflet of the plasma membrane in live cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.