Abstract

Fumonisin B1 (FB1) is one of the important mycotoxins posing health risks in the area of food safety. Asensitive fluorescence ratio immunoassay has been establishedfor FB1 based on the growth of monodispersed 2-D MnO2 nanosheet on an individual gold nanoparticle (AuNP@MnO2). FB1 competed with the coated FB1-BSA to bind the FB1 monoclonal antibody. After awashing step, alkaline phosphatase-labeled goat anti-mouse IgG (ALP-IgG) with high catalytic activity was combined with FB1 monoclonal antibody. ALP reacts with ascorbic acid 2-phosphate (AAP) to produce ascorbic acid (AA), which decomposes AuNP@MnO2 to dehydroascorbic acid (DHAA). O-Phenylenediamine dihydrochloride (OPD) is oxidized to yellow-fluorescent substrate of 2,3-diaminophenazine (DAP) (excitation, 423 nm; emission, 570 nm) by AuNP@MnO2. Meanwhile, OPD can also be reduced to blue fluorescent substrate of OPDred (excitation, 350 nm; emission, 430 nm) by DHAA. The content of FB1 can be determined by fluorescence ratio of blue/yellow. The limit of detection (LOD) of the fluorescence ratio immunoassay for FB1 was 0.06 ng mL-1, and the linear range was from 0.25 to 60.00 ng mL-1. The effectiveness of the assay was verified in real maize samples, and satisfactory recoveries were attained. The correlation coefficient of these results between the fluorescence ratio immunoassay and commercial ELISA kit was 0.9999. This method provides a sensitive and selective tool for the detection of FB1 in maize samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call