Abstract

Single crystals of 4-(diisopropylamino)benzonitrile (DIABN) undergo an intramolecular charge transfer (ICT) reaction in the excited singlet state. At 300 K, the fluorescence consists of emissions from the locally excited (LE) and from the ICT state. Upon cooling to 5 K, the ICT fluorescence intensity gradually decreases relative to that of the LE emission and is absent below 60 K. With crystalline 4-(dimethylamino)benzonitrile (DMABN), in contrast, only LE emission is found over the entire range from 300 to 5 K. The phosphorescence spectra of the DIABN and the DMABN crystals do not present any evidence for an additional ICT emission, showing that ICT does not occur in the triplet state. An activation energy Ea of ∼4 kJ/mol is determined for the LE → ICT reaction of DIABN crystals, from the temperature dependence of the fluorescence decay times τ2 and τ1. Ea is attributed to changes in the molecular conformation of DIABN other than a full rotation of the large diisopropylamino group with respect to the benzonitrile moiety. In a comparison with crystal and solution data, literature results from transient vibrational and absorption spectra are discussed and it is concluded that they cannot be employed to favor the TICT (perpendicular twist) over the PICT (planar) model for DIABN and DMABN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call