Abstract

Fluorescence nanoscopy provides imaging techniques that overcome the diffraction-limited resolution barrier in light microscopy, thereby opening up a new area of research in biomedical imaging in fields such as neuroscience. Here, we review the foremost fluorescence nanoscopy techniques, including descriptions of their applications in elucidating protein architectures and mobility, the real-time determination of synaptic parameters involved in neural processes, three-dimensional imaging, and the tracking of nanoscale neural activity. We conclude by discussing the prospects of fluorescence nanoscopy, with a particular focus on its deployment in combination with related techniques (e.g., machine learning) in neuroscience.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call