Abstract

Single molecule time-resolved fluorescence spectroscopy of CdSe/ZnS core-shell quantum dots (QDs) under the influence of moderate applied electric fields reveals distributed emission from states which are neither fully on nor off and pronounced changes in the excited state decay. The data suggest that a 54 kV/cm applied electric field causes small perturbations to the QD surface charge distribution, effectively increasing the surface trapping probability and resulting in the appearance of gray states. We present simultaneous blinking and fluorescence decay results for two sets of QDs, with and without an applied electric field. Further kinetic modeling analysis suggests that a single trapped charged cannot be responsible for a blinking off event.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.