Abstract
The signal transduction process involved in the development of the nerve terminal is an intriguing question in developmental neurobiology. During the formation of the neuromuscular junction, presynaptic development is induced by growth cone's contact with the target muscle cell. Fluorescence microscopy with specific markers has made it possible to follow signalling events during this process. By using fluorescent calcium indicators, such as fura-2 and fluo-3, we found that a rise in intracellular calcium is elicited in the growth cone upon its contact with a target, and this calcium signal can also be elicited by local application of basic fibroblast growth factor. To monitor the clustering of synaptic vesicles in response to target contact, the fluorescent vesicular probe FMl-43 was used. With this probe, we observed that packets of synaptic vesicle are already present along the length of naïve neurite, which has not encountered its synaptic target. The activity-dependent loading of FMl-43 indicates that these packets can undergo exocytosis and endocytosis upon depolarization. Time-lapse recording showed that these packets are quite mobile. Upon target contact, synaptic vesicles become clustered and immobilized at the contact site. The methodology and instrumentation used in these studies are described in this article.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.