Abstract

An important initiating step in the induction of tumors is believed to be the covalent binding of an active carcinogenic species to a cellular macromolecule, e.g. DNA. Therefore, a spectroscopic technique which allows for positive identification of the intact (macromolecular) DNA adduct and/or isolated damaged nucleosides/nucleotides is highly desirable. It is shown that fluorescence line-narrowing spectroscopy (FLNS) is a rapid, versatile, highly sensitive and selective analytical technique, which can be used directly to characterize DNA adducts and isolated nucleosides. FLNS possesses sufficient resolution to distinguish between the major DNA adducts derived from different enantiomers of benzo[a]pyrene diol-epoxide (BPDE). With the present limit of detection (approximately 1 adducted base per 10(8) normal base pairs for 100 micrograms of DNA), the technique is applicable to in vivo samples. Analysis of liver DNA from fish exposed to benzo[a]pyrene (BP) (100 mg BP/kg fish) showed that a major DNA adduct is derived from syn-BPDE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.