Abstract

In this paper, we described a novel fluorescence lifetime-based approach to determine the core–shell nanostructure of FITC-(fluorescein isothiocyanate, isomer I) doped fluorescent silica nanoparticles (FSNPs). Because of phase homogeneity between the core and the shell, electron microscopic technique could not be used to characterize such core–shell nanostructure. Our optical approach not only revealed the core–shell nanostructure of FSNPs but also evaluated photobleaching of FSNPs both in the solvated and non-solvated (dry) states. The FSNPs were produced via Stöber's method by hydrolysis and co-condensation reaction of tetraethylorthosilicate (TEOS) and fluorescein linked (3-aminopropyl)triethoxysilane (FITC–APTS conjugate) in the presence of ammonium hydroxide catalyst. To obtain a pure silica surface coating, FSNPs were then post-coated with TEOS. The average particle size was 135 nm as determined by TEM (transmission electron microscope) measurements. Fluorescence excitation and emission spectral data demonstrated successful doping of FITC dye molecules in FSNPs. Fluorescence lifetime data revealed that approximately 62% of dye molecules remained in the solvated silica shell, while 38% of dye molecules remained in the non-solvated (dry) silica core. Photobleaching experiments of FSNPs were conducted both in DI water (solution state) and in air (dry state). Severe photobleaching of FSNPs was observed in air. However, FSNPs were moderately photostable in the solution state. Photostability of FSNPs in both solution and dry states was explained on the basis of fluorescence lifetime data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.