Abstract

Fluorescence labeling of surface species (FLOSS) was applied to identify and determine the concentration of oxygen-containing functionalities on single-walled carbon nanotubes (SWCNTs), subjected to two different purification processes (air/HCl and nitric acid treatments) and compared to as-received (nonpurified) SWCNTs. The fluorophores were selected for their ability to covalently bind, with high specificity, to specific types of functionalities (OH, COOH, and CHO). FLOSS revealed that even as-received SWCNTs are not pristine and contain approximately 0.6 atomic % oxygen functionalities. FLOSS showed that, after nitric acid treatment, SWCNTs are approximately 5 times more functionalized than SWCNTs after air/HCl purification (5 versus 1 atomic % oxygen functionalities), supporting the idea that the former purification process is more aggressive than the latter. FLOSS demonstrated that carbonyls are the major functionalities on nitric-acid-purified SWCNTs, suggesting that chemical derivatization strategies might consider exploiting aldehyde or ketone chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.