Abstract

Evidence of conformational changes in rabbit muscle aldolase upon binding to phosphatidylinositol liposomes and the effect of the interaction on the thermal conformational transition are reported. Interaction with phosphatidylinositol liposomes significantly decreases the aldolase tryptophanyl fluorescence and shifts the maximum wavelength to higher values. The dynamic quenching constant for the aldolase fluorescence quenching by acrylamide in the presence of liposomes is much higher than that for unmodified enzyme; this signifies an increase in accessibility of some tryptophanyl residues to small polar molecules. Indirect interaction between single phospholipid molecules, small micelles or any soluble impurities able to penetrate into the protein molecule interior does not seem to be involved in the conformational rearrangement. Native and liposome-interaction-induced conformational states reveal different temperature dependences of the tryptophan residues exposure. The implications of the modification of the conformational state of the enzyme for its function in vivo are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.