Abstract
We have studied isolated semiconductor nanocrystal quantum dots (QDs) and small clusters of QDs by single-molecule time-correlated single-photon counting, from which fluorescence intensity trajectories, autocorrelation functions, decay histograms, and lifetime-intensity distributions have been constructed. These measurements confirm that QD clusters exhibit unique fluorescence behavior not observed in isolated QDs. In particular, the QD clusters exhibit a short-lifetime component in their fluorescence decay that is correlated with low fluorescence intensity of the cluster. A model based on nonradiative energy transfer to QDs within a cluster that have smaller energy gaps, combined with independent blinking for the QDs in a cluster, accounts for the main experimental features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.