Abstract

To evaluate and parametrize transport models for the vadose (partially water-unsaturated) zone, information about the spatial distributions of solutes is needed. We describe a technique for the simultaneous imaging of several fluorescent tracers in structured field soils. With this technique, we obtain information on local mixing under field conditions. Local dispersion is a decisive process that discriminates different flow regimes. The imaging device consists of a high-power xenon lamp and a sensitive charge coupled device (CCD) camera. The three fluorescent dyes Brilliant sulfaflavine (BF), Sulforhodamine B (SB), and Oxazine 170 (OX) were chosen as solute tracers for their spectroscopic properties and different sorption coefficients. We conducted a field experiment using these tracers and took images of their distribution in a vertical soil profile. The fluorescence images (1242 by 1152 pixels) were corrected for nonuniform lighting, changing surface roughness, and varying optical properties of the soil profile. The resulting two-dimensional relative concentration distributions were similar for BF and SB. The reason might be the fast transport regime, which prevents the establishment of sorption equilibria. According to its higher sorption coefficient, OX was more strongly retarded. In this paper, we show that the fluorescence imaging technique is a powerful tool for the in-situ investigation of transport processes of fluorescent solute tracers in soil profiles. Due to the high spatial resolution of the tracer concentration maps and the ability to detect the flow field characteristics of differently reactive tracers simultaneously under field conditions, this technique provides valuable experimental data for the test and development of theoretical models for heterogeneous solute transport in soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call