Abstract

We have studied fluorescence in rubrene single crystals by use of fluorescence up-conversion, fluorescence anisotropy, and temperature-dependent time-resolved fluorescence techniques. Thermally activated singlet fission was demonstrated to play an important role in the quenching of two intrinsic fluorescence bands, 565 and 610 nm. At low temperatures, singlet fission is suppressed while another process, namely energy trapping, becomes pronounced. The 650 nm fluorescence originates from the hole trap states located 0.27 eV above the valence band.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.