Abstract

Second near-infrared window (NIR-II, 1000–1700 nm) imaging is one of the foremost optical imaging techniques. However, surface-enhanced Raman scattering (SERS)-based research in this optical region remains in its infancy, mainly because of a lack of suitable NIR-II Raman reporters. Herein, we report the first example of a nickel dithiolene complex as a NIR-II resonance Raman reporter with intense long wavelength absorption (ε = 9.58 × 104 m−1 cm−1 at 1007 nm), fluorescence-free features and ultrahigh affinity to noble metal surfaces with its eight sulfur atoms. Surface-enhanced resonance Raman scattering nanoprobes constructed with such reporters enable high contrast and highly photostable lymph node imaging far superior to that possible with existing NIR-I and NIR-II SERS nanoprobes. The developed NIR-II nanoprobes allow deep optical penetration (8 mm) as well as in vivo SERS detection of deep-seated microtumors in mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call