Abstract

The fluorescence excitation and emission spectra in n-octane of 1,8-dihydroxyanthraquinone-d0 and -d2 at 10 K have been measured. Dual excitation and emission were observed as a consequence of excited state intramolecular proton transfer. A model, based on the Lippincott–Schroeder potential function, is proposed to predict the observed energy gaps and relative intensities of the transition. The isotopic effects are also explained. The Shpolskii matrices in n-octane show only one main site allowing a detailed vibrational analysis of the ground and the excited states. This furnished further evidence for the existence of excited state tautomers. The occurrence of an extra fluorescence was explained in terms of the ν(OH) stretching mode of the high frequency transition enhanced via vibronic coupling between the two ground states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.