Abstract

We combined confocal surface plasmon coupled emission microscopy (C-SPCEM) together with fluorescence emission difference (FED) technique to pursuit super-resolution fluorescent image. Solid or hollow point spread function (PSF) for C-SPCEM is achieved with radially-polarized or circularly-polarized illumination. The reason why PSF can be manipulated by the polarization of illumination light is corroborated by the interaction of fluorescent emitter with vector focal field on the plasmonic substrate. After introduction of FED technique, PSF for C-SPECM can shrunk to around λ/4 in full-width half-maximum, which is unambiguously beyond Rayleigh's diffraction limit. The super-resolution capability of C-SPCEM with FED technique is experimentally demonstrated by imaging aggregated fluorescent beads with 150 nm in diameter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call