Abstract

DNA is a type of promising material for the construction of sensors owing to its sequence programmability to control the formation of certain structures. MicroRNA (miRNA) can be applied as promising biomarkers for the diagnosis of a range of diseases. Herein, a novel fluorescent sensing strategy for miRNA is proposed combining duplex-specific nuclease (DSN)-mediated amplification and dumbbell DNA structural switch. Gold nanoparticles (AuNPs) are employed, which provide a 3D reaction interface. They also act as effective fluorescence quenchers. The proposed sensor exhibits high sensitivity (sub-femtomolar level) with a wide dynamic range. In addition, excellent selectivity to distinguish homology sequences is achieved. It also performs satisfactorily in biological samples. Overall, this fluorescent sensor provides a powerful tool for the analysis of miRNA levels and can be applied for related biological studies and clinical diagnosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.