Abstract
Arapid and convenient fluorescence glyphosate (GLYP) biosensor was developed based on DNA-templated copper nanoparticles (DNA-CuNPs). In the absence of GLYP, the DNA-CuNPs were formed through the reduction of Cu2+ by vitamin C (Vc). TheDNA-CuNPs emitted intense fluorescence at 615nm when being excited at 340nm. In the presence of GLYP, GLYP can strongly chelate with Cu2+ by the phosphate and carboxyl groups to decrease the amount of free Cu2+. Due to the lack of free Cu2+, DNA-CuNPs cannot be formed, which caused the fluorescence to decrease. The whole detection process of this proposed GLYP biosensor can becompleted within 14min. Titration experiments showed that this biosensor had a linear relationship for GLYP in therange 1 to 18µM with a limit of detection (LOD) of 0.47µM. This biosensor showed obvious selectivity among other pesticides, even between GLYP and organophosphorus pesticides. This biosensor performed well for GLYP detection in real samples with recoveries of 88.0-104.0%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.