Abstract

The time dependence of the human alpha 1-antitrypsin polymerization process was studied by means of the intrinsic fluorescence stopped-flow technique as well as the fluorescence-quenching-resolved spectra (FQRS) method and native PAGE. The polymerization was induced by mild denaturing conditions (1 M GuHCl) and temperature. The data show that the dimer formation reaction under mild conditions was followed by an increase of fluorescence intensity. This phenomenon is highly temperature sensitive. The structure of alpha 1-antitrypsin dimer resembles the conformation of antithrombin III dimer. In the presence of the denaturant the polymerization process is mainly limited to the dimer state. The alpha 1-antitrypsin activity measurements confirm monomer-to-dimer transition under these conditions. These results are in contrast to the polymerization process induced by temperature, where the dimer state is an intermediate step leading to long-chain polymers. On the basis of stopped-flow and electrophoretic data it is suggested that both C-sheet as well as A-sheet mechanisms contribute to the polymerization process under mild conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.