Abstract

Insulin-gold nanoclusters exhibit outstanding biocompatibility, photostability, and fluorescence quantum efficiency. However, they have never been used in superresolution microscopy, which requires nonlinear switching or saturation of fluorescence. Here we examine the fluorescence and stimulated emission depletion properties of gold nanoclusters. Their bleaching rate is very slow, demonstrating superior photostability. Surprisingly, however, the best depletion efficiency is less than 70%, whereas the depletion intensity requirement is much higher than the expectation from a simple two-level model. Fluorescence lifetime measurement revealed two distinct lifetime components, which indicate intersystem and reverse intersystem crossing during excitation. Based on population dynamic calculation, excellent agreement of the maximal depletion efficiency is found. Our work not only features the first examination of STED with metallic clusters, but also reveals the significance of molecular transition dynamics when considering a STED labeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.