Abstract

We have performed a thorough characterization of fluorescence correlations spectroscopy (FCS) applied to oil-water interfaces of viscous oil droplets in aqueous solution, including numerical wave-optical calculations of the detection geometry and regularized multicomponent analysis of sample data. It is shown how significant errors in the estimation of the surface concentration can be avoided when FCS is applied to an interface region. We present data on the adsorption dynamics of beta-lactoglobulin (BLG), a well-studied model system. It is found that electrostatic repulsion slows the adsorption process and reduces the initial saturation density far below the monolayer concentration. During the first stages of adsorption, the diffusion coefficients of adsorbed protein closely follow the 2D hard disk model of Lahtinen et al.1 in response to increased surface concentration, which suggests that protein-protein interactions are limited to long-range Coulombic interactions at this stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.