Abstract

The fate of colored natural organic matter (CNOM) was investigated for a period of 16 months at a municipal wastewater treatment plant of a mid-sized city in Northern Ontario, Canada, using fluorescence spectroscopy. Our objectives were to assess the changes of CNOM at the inlet and outlet of the plant and to determine if these changes were correlated with parameters routinely measured at the plant. The fluorescence signals were spectrally resolved into humic-like, fulvic-like, and protein-like components using a parallel factor analysis (PARAFAC) routine. We found that the signals of the CNOM components in the raw sewage had protein-like characteristics, followed by fulvic-like and humic-like characteristics. Conversely, after treatment, the CNOM signals were dominated by fulvic-like components, followed by approximately equal signals of humic-like and protein-like components. The fluorescence signals were, on average, ∼60 % lower in the effluent for the protein-like components and ∼28 % lower for the humic-like components, suggesting a decomposition of these CNOM materials. The fluorescence signals showed a small apparent increase of fulvic-like components, by ∼4 %, suggesting that the material showing this signal is recalcitrant to decomposition, or it could be potentially produced in the process. We found weak but statistically significant correlations (R 2 > 0.3) between the total fluorescence signals and total carbon (TC), the flow rate through the plant, and rainfall in the raw sewage. Similarly, correlations were found between protein-like fluorescence of the protein-like components and total Kjeldahl nitrogen (TKN) and ammonium at the effluent (R 2 > 0.3).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.