Abstract
Fluorescence-based imaging has an enormous impact on our understanding of biological systems. However, in vivo fluorescence imaging is greatly influenced by tissue scattering. A better understanding of this dependence can improve the potential of noninvasive in vivo fluorescence imaging. In this article, we present a diffusion model, based on an existing master-slave model, of isotropic point sources imbedded in a scattering slab, representing fluorophores within a tissue. The model was compared with Monte Carlo simulations and measurements of a fluorescent slide measured through tissue-like phantoms with different reduced scattering coefficients (0.5-2.5 mm-1 ) and thicknesses (0.5-5 mm). Results show a good correlation between our suggested theory, simulations and experiments; while the fluorescence intensity decays as the slab's scattering and thickness increase, the decay rate decreases as the reduced scattering coefficient increases in a counterintuitive manner, suggesting fewer fluorescence artifacts from deep within the tissue in highly scattering media.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.