Abstract

The room temperature phosphorescence (RTP) and fluorescence behavior of 6-bromo-2-naphthol (BN) in water and β-cyclodextrin (β-CD) aerated aqueous solution was investigated. The study of fluorescence behavior at different pH values indicated that three kinds of species of BN (protonated, uncharged and anionic species) formed 1:1 inclusion complexes with β-CD, and RTP and fluorescence emission depended on the pH of the solution. The inclusion complex constants were 430±25 l mol −1 (pH 1.80), 840±25 l mol −1 (pH 5.80), 1850±75 l mol −1 (pH 11.50), respectively. Experimental results elucidated that RTP of the BN/β-CD/cyclohexane solution came from the protonated and uncharged species of BN, but not from the anionic species, though the inclusion constant of the anionic species of BN with β-CD was larger than that of the other two species of BN Selective molecular recognition of BN/β-CD as an RTP sensor for 28 small organic molecules was studied, it was shown that BN/β-CD could be develop as a new RTP sensor with high selectivity molecular recognition ability for cyclohexane.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call