Abstract

The lightly sulfonated polystyrene ionomer is only soluble in some organic solvents, such as toluene and tetrahydrofurnan (THF). The mixture of its organic solution with water normally leads to macroscopic phase separation, namely precipitation. In this study, using the steady-state fluorescence, the nonradiative energy transfer and dynamic laser light scattering, we demonstrate that the sulfonated polystyrene ionomers can form stable colloidal nanoparticles if the THF solution of the ionomers is dropwisely added into an excessive amount of water, or vice verse, water is added in a dropwise fashion into the dilute ionomer THF solution under ultrasonification or fast stirring. The hydrophobic core made of the polystyrene backbone chains is stabilized by the ionic groups on the particle surface. Such formed stable nanoparticles have a relatively narrow size distribution with an average diameter in the range of 5–12 nm, depending on the degree of sulfonation, the initial concentration of the ionomer THF solution, and the mixing order. This study shows another way to prepare surfactant-free polystyrene nanoparticles. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1593–1599, 1997

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.