Abstract
The luminescence arising from lanthanide cations offers several advantages over organic fluorescent molecules: sharp, distinctive emission bands allow for easy resolution between multiple lanthanide signals; long emission lifetimes (μs -ms) make them excellent candidates for time-resolved measurements; and high resistance to photo bleaching allow for long or repeated experiments. A method is presented for determination of nucleosides using the effect of enhancement of fluorescence of the easily accessible europium(III)-TNB in presence of different nucleosides. The latter coordinates to Eu(III) -TNB and enhances its luminescence intensity as a result of the displacement of water from the inner coordination sphere of the central metal. A similar method for the determination of DNA based on the quenching of Eu(III)-TNB has been established. The interaction of Eu(III)-4,4,4 trifluoro-1-(2-naphthyl)1,3-butanedione (TNB) complex with nucleosides (NS) (guanosine, adenosine, cytidine, inosine) and DNA has been studied using normal and time-resolved luminescence techniques. Binding constants were determined at 293 K, 298 K, 303 K, 308 K and 313 K by using Benesi-Hildebrand equation. A thermodynamic analysis showed that the reaction is spontaneous with ΔG being negative. The enthalpy ΔH and the entropy ΔS of reactions were all determined. The formation of binary and ternary complexes of Eu(III) with nucleosides and TNB has been studied potentiometrically at (25.0 ± 0.1) °C and ionic strength I = 0.1 mol.dm(-3) (KNO3) . The formation of the 1:1 binary and 1:1:1 ternary complexes are inferred from the corresponding titration curves. Initial estimates of the formation constants of the resulting species and the protonation constants of the different ligands used have been refined with the HYPERQUAD computer program. Electrochemical investigations for the systems under investigations have been carried out using cyclic voltammetry (CV), differential pulse polarography (DPP), and square wave voltammetry (SWV) on a glassy carbon electrode in I = 0.1 mol/L p-toluenesulfonate as supporting electrolyte.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.