Abstract

A novel type of fluorescent and electrochemical dual-signal sensor was constructed for the sensitive and selective detection of iron ions (Fe3+) based on a fluorescent material (Chi-FITC-4MU), which was synthesized by combining the organic dye 4-methylumbelliferone (4-MU), chitosan, and fluorescein isothiocyanate (FITC) in a simple step process. The 4-MU could bind to Fe3+ to form a complex, and clearly improved the selectivity of Chi-FITC-4MU for Fe3+ detection. FITC showed excellent fluorescence performance and chitosan was beneficial to the curing of the material. By solidifying the fluorescent material on an ITO surface, the dual-signal detection of Fe3+ could be realized with excellent selectivity, stability, and anti-interference ability. Based on the unique fluorescence properties of this sensor, the concentration of Fe3+ could be visualized in the linear range of 0.1-100 μM based on the degree of fluorescence quenching. Moreover, the highly sensitive and rapid analysis of low concentrations of Fe3+ was achieved through the electrochemical properties of the ITO sensor. The limit of detection (LOD) and the corresponding linear range were 0.0184 nM and 0.1-500 nM, respectively. Furthermore, this dual-signal sensor was effectively used for the detection of Fe3+ in actual water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call