Abstract
This study developed a dual-readout system utilizing fluorescence and colorimetry based on iron oxide quantum dots (IO-QDs) for detecting tetracycline (TCy). IO-QDs were synthesized within 6 h using L-leucine as a surface modifier, achieving a more efficient route. Upon interaction with TCy, IO-QDs exhibited a significant decrease in fluorescence response and observable color changes, while fluorescence lifetime remained consistent regardless of TCy presence. Moreover, IO-QDs' fluorescence response remained stable across various temperatures. The Förster resonance energy transfer distance of less than 2 nm and a quenching constant of 2.90 × 1012 M-1s-1 indicated static quenching in the presence of TCy. Additionally, significant changes in observed and corrected fluorescence efficiency suggested the involvement of the inner filter effect in the fluorescence quenching of IO-QDs. The synthesized IO-QDs were then utilized for selective and rapid fluorescence-based TCy detection, showing a linear range of 0.5 to 80 μM. Simultaneously, a colorimetric method for TCy detection was established, demonstrating a good linear relationship within the range of 0.5 to 20 μM. The detection limits for TCy were determined as 0.539 and 0.329 μM using fluorescence and colorimetric approaches, respectively. Furthermore, IO-QDs were applied to detect real samples, and the dual-readout probe exhibited satisfactory recoveries, confirming the practical reliability of the developed method for analyzing milk and drinking water samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.