Abstract

Conventional monodimensional fluorescence spectroscopy in the emission, excitation, and synchronous-scan modes and total luminescence spectroscopy have proven to be sensitive techniques for characterization and differentiation of humic acid (HA) and fulvic acid (FA) fractions isolated from an aerobically and anaerobically digested and limed biosolid, two layers of a sandy and a clayey Brazilian oxisol, and the corresponding biosolid-amended soils. The spectral patterns and the relative fluorescence intensities suggest greater molecular heterogeneity, less aromatic polycondensation, and less humification of biosolid HA and FA compared with soil HA and FA. However, the differences are smaller for the FA fractions than for the HA fractions. Fluorescence properties of soil HA and FA differ slightly as a function of soil type and soil layer. Biosolid application causes a shift to shorter wavelengths of the main fluorescence peaks and marked variation of the relative fluorescence intensities of HA and FA isolated from amended soils. These results suggest that molecular components of relatively small molecular size, with a low level of aromatic polycondensation, and low degree of humification present in biosolid HA and FA are partially and variously incorporated into amended soil HA and FA. In general, these modifications seem to be smaller in HA and FA from the clayey soil layers than in those from the sandy soil layers, possibly because of protective effects exerted by clay minerals of native soil HA and FA against disturbances caused by biosolid application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call