Abstract

The differentiation of dopaminergic (DA) neurons from mouse embryonic stem cells (ESCs) can be efficiently induced, making these neurons a potential source for transplantation as a treatment for Parkinson's disease, a condition characterized by the gradual loss of midbrain DA neurons. One of the major persistent obstacles to the successful implementation of therapeutic ESC transplantation is the propensity of ESC-derived grafts to form tumors in vivo. To address this problem, we used fluorescence-activated cell sorting to purify mouse ESC-derived neural precursors expressing the neural precursor marker Sox1. ESC-derived, Sox1+ cells began to express neuronal cell markers and differentiated into DA neurons upon transplantation into mouse brains but did not generate tumors in this site. In contrast, Sox1- cells that expressed ESC markers frequently formed tumors in vivo. These results indicate that Sox1-based cell sorting of neural precursors prevents graft-derived tumor formation after transplantation, providing a promising strategy for cell transplantation therapy of neurodegenerative disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.