Abstract

Multiplexed asymmetric-detection time-stretch optical microscopy (multi-ATOM) has recently been developed to enable high-throughput quantitative phase imaging flow cytometry, from which single-cell biophysical properties can be measured at large scale. However, it lacks the ability to link such biophysical knowledge to biomolecular signatures at the single-cell precision for validation and correlative multi-scale single-cell analysis. We report a high-throughput multimodal system that integrates multi-ATOM with multiplexed 1-D fluorescence imaging/detection, termed FluorATOM; and applied it to perform synchronized biophysical and biomolecular phenotyping of rare breast circulating tumor cells detected in peripheral blood in a mouse xenograft at a throughput of >10,000 cell/sec.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.