Abstract

Purpose The role of regional hemodynamics in intracranial aneurysms (IAs) hemodynamics and rupture risk has been widely discussed based on numerical models over the past decades. The aim of this paper is to investigate hemodynamics and rupture risk with a complicated IA model. Methods Fluid-structure interaction (FSI) simulations were performed to quantify the hemodynamic characteristics of the established IA models. Hemodynamic parameters, including wall shear stress (WSS), flow velocity, and flow pattern, were calculated and analyzed. Results In this paper, the risk assessment of intracranial aneurysms focuses on the mechanical properties of blood flow and blood vessel walls. Vortex flow and concentrated impact field during blood flow play a decisive role in the rupture and development of aneurysms. The uneven distribution of wall shear stress on the vessel wall has a great influence on growth and rupture. By observing the simulation results of rigid walls, risks can be predicted efficiently and accurately. Conclusions This paper focuses on the relationship between hemodynamics and ruptures risk with a double intracranial aneurysms disease mode and provides a new perspective on the treatment of intracranial aneurysms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.