Abstract

PurposeThis paper aims to utilize purpose advanced fluid‐structure interaction, non‐linear dynamics, finite‐element analyses in order to investigate various phenomena and processes accompanying blast wave generation, propagation and interaction and to assess the blast‐wave‐mitigation potential of a piston‐cylinder assembly placed in front of the target structure.Design/methodology/approachThe employed computational methods and tools are verified and validated by first demonstrating that they can quite accurately reproduce analytical solutions for a couple of well‐defined blast wave propagation and interaction problems.FindingsThe methods/tools are used to investigate the piston‐cylinder blast‐mitigation concept and the results obtained clearly reveal that significant blast‐mitigation effects can be achieved through the use of this concept. Furthermore, the results showed that the extent of the blast‐mitigation effect is a sensitive function of the piston‐cylinder geometrical parameters. Specifically, the mass of the piston and the length of the cylinder are found to be the dominant factors controlling the extent of the blast‐wave‐mitigation.Originality/valueThe work demonstrates that, when assessing the blast‐wave‐mitigation potential of the piston‐cylinder concept, it is critical that loading experienced by the piston be defined by explicitly modeling (fluid/structure) interactions between the blast wave(s) and the piston.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call