Abstract

This paper presents a novel three-dimensional fluid–structure interaction (FSI) approach, where the meshless smoothed particle hydrodynamics (SPH) method is used to simulate the motion of incompressible fluid flows, whilst structures are represented by a simplified approach based on particle–spring systems. The proposed FSI technique allows to use independent spatial–temporal resolutions for the fluid and structural computational domains. The particle–spring elastic constants are calibrated and relationships with the mechanical material properties, Young’s modulus and Poisson’s ratio, are determined. Fluid and structure computational domains are separated by interfaces made of triangular elements whose position is updated during the simulation following the structural deformation. The coupling of the two media at the fluid–structure interfaces is handled by the introduction of solid and fluid boundary particles. This approach, automatically and without introducing further complexity, avoids the penetration of fluid particles into the solid domain. The efficiency and accuracy and the present method are validated with analytical/benchmark solutions from the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.