Abstract

Fluid structure interaction (FSI) analysis is of great significance with the advance of computing technology and numerical algorithms in the last decade. This multidisciplinary problem has been expanded to engineering applications such as offshore structures, dam-reservoirs and other industrial applications. The motivation of this research is to investigate the fundamental physics involved in the complex interaction of fluid and structural domains by numerical simulations and to tackle the multiple surface interactions of a one-way coupling FSI GBS engineering case. To solve such problem, the partitioned method has been adopted and the approach is to utilise the advantage of the existing numerical algorithms in solving the complex fluid and structural interactions. The suitability has been validated for both strong and weak coupling methods which are the distinctive partitioned coupling approach. Therefore, with the computational platform of ANSYS FEA, the coupled field methods were adopted in this numerical analysis. Comparisons were made with the results obtained to justify the ability of both strong and weak methods in resolving the one-way coupling example with the potential applications in the field of ocean and marine engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call