Abstract

This paper builds on a recently developed computationally tractable material model merged with an immersogeometric fluid–structure interaction methodology for bioprosthetic heart valve modeling and simulation. Our main objective is to enable improved application of the use of exogenous crosslinked tissues in prosthesis design through computational methods by utilizing physically realistic constitutive models. To enhance constitutive modeling, valve leaflets are modeled with a computationally efficient phenomenological constitutive relation stemmed from a full structural model to explore the influence of incorporating a high-fidelity material model for the leaflets. We call this phenomenological version as the effective model. This effective model constitutive form is incorporated in the context of the isogeometric analysis to develop an efficient fluid–structure interaction method for thin shell structure of the leaflet tissues. The implementation is supported by representative simulations showing the applicability and usefulness of our effective material model in heart valve simulation framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call