Abstract
This paper presents a semi-analytical solution of the coupled differential equations for fluid and solid phase in a one-dimensional porous medium in thermal non-equilibrium. The thermal impulse response of the fluid and solid phases is used to determine the pressure loss over the thickness of the material. Experimental data obtained from surface heating of porous ZrB2 samples is compared to the theoretical model. The plenum pressure, surface temperature and backside temperature are measured using pressure sensors, thermographic imaging and thermocouple instrumentation The non-integer system identification (NISI) approach is used to obtain the thermal impulse response which is then compared with the model prediction. Plenum pressure rise and thermal impulse response of the heating experiments are used to assess the volumetric heat transfer coefficient of the sample. Good agreement is found between the simulated and experimental data for the temperature and pressure measurements. The obtained heat transfer coefficients are between 2.1 · 104 and 6.8 · 104 W m−3 K−1 for mass fluxes of 10 to 244 g m−2 s −1 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.