Abstract

Hybrid Shingled Magnetic Recording (H-SMR) drives are the most recently developed SMR drives, which allow dynamic conversion of the recording format between Conventional Magnetic Recording (CMR) and SMR on a single disk drive. We identify the unique opportunities of H-SMR drives to manage the tradeoffs between performance and capacity, including the possibility of adjusting the SMR area capacity based on storage usage and the flexibility of dynamic data swapping between the CMR area and SMR area. We design and implement FluidSMR, an adaptive management scheme for hybrid SMR Drives, to fully utilize H-SMR drives under different workloads and capacity usages. FluidSMR has a two-phase allocation scheme to support a growing usage of the H-SMR drive. The scheme can intelligently determine the sizes of the CMR and the SMR space in an H-SMR drive based on the dynamic changing of workloads. Moreover, FluidSMR uses a cache in the CMR region, managed by a proposed loop-back log policy, to reduce the overhead of updates to the SMR region. Evaluations using enterprise traces demonstrate that FluidSMR outperforms baseline schemes in various workloads by decreasing the average I/O latency and effectively reducing/controlling the performance impact of the format conversion between CMR and SMR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.