Abstract

In this chapter, basic concepts in fluid mechanics are introduced. Firstly, the definition of a fluid is discussed in depth with the conclusion that a fluid is such a substance that cannot generate internal shear stresses by static deformation alone. Secondly, some important properties of fluids are discussed, which includes viscosity of fluids, surface tension of liquids, equation of state for gases, compressibility of gases, and thermal conductivity of gases. Lastly, some important concepts in fluid mechanics are discussed, which includes the concept of continuum and forces in a fluid. Within these discussions, fluid is compared to solid in both microscopic and macroscopic to reveal the mechanism of its mechanical property. Viscosity of fluid is compared to friction and elasticity of solid to give readers a better idea how it works microscopically. Forces is classified as body force and surface force for further analysis. Finally, continuum hypothesis is introduced to deem the fluid as continuously separable, which tells the reader that fluid mechanics is a kind of macroscopic mechanics that conforms Newtonian mechanics and thermodynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.