Abstract

Superplasticizers and especially polycarboxylate grafted polyethylene oxide (PCE) demonstrated their efficiency to fluidify concrete. The aim of this work is to investigate the evolution of the fluidity as a function of adsorption in a sulfated solution with a wide variety of comb-like superplasticizers and at incomplete adsorption rate. Polymers with various side chain lengths, grafting ratios and also with modified anionic functions (carboxylate, dicarboxylate and phosphate) were synthesized. Inert calcite suspensions were used to mimic early age cementitious materials avoiding the cement hydration. Models of polymer conformation and yield stress prediction have been tested. But the most appropriate parameter which captures the fluidity/adsorption relationship is the mass of adsorbed polymer. A unique relationship “log(yield stress) vs. adsorbed mass of PCE” has been highlighted whatever the classical carboxylate PCE structure. The modification of the anionic function does not enhance the fluidizing efficiency. Each PCE has roughly the same fluidizing efficiency when it manages to adsorb in these ionic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.