Abstract

A generalized modeling method is introduced and used to evaluate thermal energy storage (TES) performance. The method describes TES performance metrics in terms of three efficiencies: first-law efficiency, second-law efficiency, and storage effectiveness. By capturing all efficiencies in a systematic way, various TES technologies can be compared on an equal footing before more detailed simulations of the components and concentrating solar power (CSP) system are performed. The generalized performance metrics are applied to the particle-TES concept in a novel CSP thermal system design. The CSP thermal system has an integrated particle receiver and fluidized-bed heat exchanger, which uses gas/solid two-phase flow as the heat-transfer fluid, and solid particles as the heat carrier and storage medium. The TES method can potentially achieve high temperatures (>800 °C) and high thermal efficiency economically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.