Abstract

To produce carbon nanotubes (CNTs) practically, a high carbon source concentration and high carbon yield are essential. By feeding moderately active ethylene at 10–20 vol% with mildly oxidative carbon dioxide at 1 vol%, submillimeter-long single-wall CNT (SWCNT) arrays were synthesized via fluidized-bed chemical vapor deposition using an Fe/AlOx catalyst sputtered on ceramic beads. SWCNTs with an average diameter of 2.9 nm, long length (0.3 mm), low catalyst impurity (0.1 mass%), and high specific surface area (1178 m2/g) were obtained at a high carbon yield of 28%. This study thus introduces a route for more efficient and cleaner production of long and pure SWCNTs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call