Abstract

In this work we have tested the fluidized bed desulfurization performance of lime particles obtained by means of a limestone slow calcination pre-treatment technique. This performance was compared to that of the parent untreated limestone particles. The occurrence of particle fragmentation and attrition during the fluidized bed operation was also investigated with a specific test protocol for both raw limestone and pre-treated lime sorbent. Two particle size ranges were tested under typical fluidized bed coal combustion conditions (T=850°C; SO2=1800ppm). The experiments were complemented by porosimetric and morphological (SEM) analyses of the sorbent. Results showed that limestone pre-treatment was able to preserve the high mechanical strength of the parent particles as opposed to the fast in situ calcination typically active in fluidized beds. In addition, a high calcium reactivity and final conversion were observed for the pre-treated lime particles, leading to a SO2 capture capacity per unit mass of sorbent much higher than that obtained with the untreated limestone. Simple economic evaluations suggest that the use of the pre-treated lime in place of limestone can involve significant economies for fluidized bed coal combustor operators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.