Abstract

The influence of different factors on the fluidization of a binary mixture of sisal residue and sand was investigated. The particle sizes of the sand and sisal residue were varied from 0.2 to 0.8mm and the biomass mass fractions from 2% to 9%. Some segregation was noted, and a significant relationship was found among the final fluidization velocity (Uff), the biomass and sand sizes, and the biomass mass fraction. A novel model was developed for predicting Uff, leading to an average discrepancy of 12.69% between the measured and predicted Uff compared with the best match of 15.32% when using a model from a previous paper. The new model was applied to data from studies using other biomass and a broad range of particle characteristics. The average divergences from measured values when using the new model were 7.9% for corn cob and walnut shell, and 20.5% for sweet sorghum bagasse, tobacco residue, and soy hulls. These were superior to the values derived using other models. Our results confirm the accuracy of the model developed in this work and show that it represents a viable alternative way to calculate Uff for a binary mixture of sand and biomass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.