Abstract

The fluidity evolution of an Al–10 vol.% B4C experimental composite during long holding periods has been investigated by using a vacuum fluidity test. It was found that the fluidity of the composite melt decreased with the increase of the holding time. The microstructure of the fluidity samples was examined by optical metallography, quantitative image analysis, and electron microscopy. Two secondary reaction-induced phases were identified and the volume fraction changes of the solid phases during the holding periods were quantified. The relationship between the fluidity, volume fraction, and surface area of solid phase particles was established. In addition, the particle distribution along the entire length was examined in the fluidity samples. The mechanism of the particle redistribution during flow and solidification is presently discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.