Abstract

[1] A swarm earthquake sequence is often assumed to be triggered by fluid flow within a brittle fault damage zone, which is assumed to be highly permeable. However, there is little seismological evidence of the relation between the fluid flow within the fault damage zone and the occurrence of swarm earthquakes. Here, we precisely determine the hypocenters and focal mechanisms of swarm earthquakes that occurred in the caldera of Hakone volcano, central Japan, using data from a dense seismic network. We demonstrate that the swarm earthquakes are concentrated on four thin plane-like zones, each of which has a thickness of approximately 100 m. One of the nodal planes of the focal mechanisms agrees with the planar hypocenter distribution. The swarm earthquakes that occurred during the initial stage of the activity exhibited a migration of hypocenters that appears to be represented by the diffusion equation. Based on the spatiotemporal distribution of the earthquakes, the hydraulic diffusivity is estimated to be approximately 0.5–1.0 m2/s. The observations imply that swarm earthquakes were triggered by the diffusion of highly pressured fluid within the fault damage zone. A burst-like occurrence of the swarm earthquakes is also observed in the later stage. These swarm earthquakes are thought to have been triggered primarily by local stress changes caused by the preceding activity. The complicated spatiotemporal pattern is thought to have been caused by the effect of the fluid flow within the high-permeability damage zones as well as the stress perturbations generated by the swarm earthquakes themselves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.