Abstract

Rolling motions have been observed in many animals and insects. In the previous fluidic rolling system, a deformed chamber and long cables were imperative to drive the soft rolling actuators, which required high pressure and a sophisticated controlling strategy. In this study, we propose a soft fluidic roller using a simple structure composed of a bendable and twistable electrohydrodynamic (EHD) pump and a layer of natural latex. To realize the rolling motion, we first optimized the electrode and channel height of the EHD pumps using different patterns and designs. We also examined the output power, efficiency, pressure loss, bending, and twisting performance. Subsequently, the optimized electrodes and channel height were selected to design the power source of the EHD roller. This roller was lightweight (0.7 g) with an amount of liquid (0.6 g). This EHD robot can roll as the EHD liquid oscillates under a duty-controlled voltage realized using a high-voltage circuit. Next,we investigated the influence of frictional forces on rolling performance. Finally, the rolling motion in the liquid was demonstrated. This study extends the EHD pumps to independent soft actuators integrated with a soft power source.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.