Abstract
This paper demonstrates the closed-loop control of the frequency and phase of a fluidic oscillator using acoustic excitation. It is shown experimentally that the use of acoustic excitation modifies the passive feedback mechanism and slows down the jet switching process. Closed-loop control is employed to vary the oscillation frequency at a fixed flow rate and track a sinusoidal reference target without phase error, using measurements from a pitot probe in the device. The controller is demonstrated to be effective at rejecting disturbances, which is illustrated with both time and frequency domain data. The controller’s ability to track step changes to the reference signal phase is tested, and the closed-loop bandwidth is shown to be around 20% of the oscillation frequency, in close agreement with the theoretical prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.