Abstract

A proof-of-concept fluidic assembly of a hybrid MEMS GaAs microcantilever spin injector is presented here. Instead of monolithically forming MEMS from pre-deposited layers, we fabricate a hybrid MEMS by assembling pre-fabricated parts. Sub-millimetre sized patches of GaAs having a thickness of 3 µm are pre-fabricated, as is a metalized fused silica support layer. The GaAs patches are manipulated and assembled onto the silica support using capillary forces; the resultant hybrid MEMS comprises a GaAs microcantilever on a robust fused silica support. A novel ohmic contact is demonstrated by bonding a GaAs patch (p-type carbon doped to 1 × 1018 cm−3) onto the pre-metalized silica support layer prior to annealing; measurements revealed ohmic behaviour and a specific contact resistivity of ∼10−5 Ω cm. Preliminary investigations show that, when contacting the cantilever against a metallic or magnetic surface, injected photocurrents as large as several tens of nA can be obtained, for which the spin polarization is equal to 16%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.