Abstract

An experimental program was carried out by subjecting normal square finned tube arrays to gradually increasing water cross flows. In all, total six tube arrays were tested—three having pitch ratio 2.1 and remaining three of pitch ratio 2.6. Under each category, three arrays tested were: plain array, coarse finned array, and fine finned array. The objective of the research was to determine the fluid velocity at which each of the six arrays becomes fluidelastically unstable. The experiments were started with tests on plain arrays to establish them as a datum case by comparing their test results with published results on plain arrays having lower pitch ratios. This was then followed by testing of finned arrays to study the effect of fins on the instability threshold. The tubes were subjected to a gradually increasing flow rate of water from 10 m3/h to the point where instability was reached. The results of the present work are compared with author's earlier published results for parallel triangular arrays in water. The research outcomes help to study the effect of pitch ratio, tube array pattern, and fin density on the instability threshold. The results show that instability is delayed due to the addition of the fins. It is also concluded that normal square arrays should be preferred over parallel triangular arrays to avoid fluidelastic vibrations. The vortex shedding behavior studied for all the arrays shows that small peaks before fluidelastic instability are due to vortex shedding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.